>>> import rdflib
>>> from rdflib import ConjunctiveGraph
>>> graph = ConjunctiveGraph()
>>> graph.parse("http://semantictweet.com/ecolix"))>
>>> for triple in graph:
... print triple
Wednesday, December 28, 2011
Introduction to RDFLib
Tuesday, December 6, 2011
Git is your friend !
> cd myproject
> git clone git@github.com:myproject.git .
> git branch --track abranch origin/abranch
Some tutorials:
Sunday, October 30, 2011
Notes about "JavaScript: The Definition Guide" of David Flanagan
there are :
- the core JavaScript language = minimal API without I/O functions
- client-side JavaScript = hosting environment (browser)
to debug : console.log() or alert()
Chapter 2: Lexical Structure
- Character Set
- support Unicode
- Case Sensitive
- ignores Whitespace
- Comments
- Literal
Monday, September 12, 2011
Some unsorted facts about RDF
Here some facts taken from the book "practical RDF" of Shelley Powers
about RDF
- RDF provides a standard way of expressing graphs of data and sharing them with other people and with machines.
- RDF is a language for expressing data models using statements expressed as triples. Each statements is composed of a subject, a predicate, and an object.
- RDF conceptualizes anything (and everything) in the universe as a resource. A resource is simply anything that can be identified with a Universal Resource Identifier (URI). And by design, anything we can talk about can be assigned a URI.
- URLs are a subset of URIs that identify where digital information can be retrieved.
- Because URIs uniquely identify resources (things in the world), we consider them strong identifiers. There is no ambiguity about what they represent, and they always represent the same thing, regardless of the context we find them in.
about RDF graph model
- the RDF data model is best represented by a directed labeled graph
- the RDF directed graph consists of a set of nodes connected by arcs, forming a pattern of node-arc-node. Additionally, the nodes come in three varieties: uriref, blank nodes, and literals.
- there are RDF data models that can be represented in RDF graphs, but not in RDF/XML. The addition of rdf:nodeIDs provided some of the necessary syntactic elements that allow RDF/XML to record all RDF graphs. However, RDF/XML still can't encode graphs whose properties (predicates) cannot be recorded as namespace-qualified XML names, or QNames.
- the components of the RDF graph - the uriref, bnode, literal, and arc - are the only components used to document a specific instance of an RDF data model.
- there is no rule or regulation within the RDF graph that insists that all nodes be somehow connected with one another.
- an RDF graph is considered grounded if there are no blank nodes.
- an instance of an RDF graph is a graph in which each blank node has been replaced by an identifier, becoming a named node.
about RDF tiple
- each RDF triple is a complete and unique fact
- each RDF triple can be joined with other RDF triples, but it still retains its own unique meaning, regardless of the complexity of the model in which it is included
- regardless of how complex an RDF graph, it still consists of only a grouping of unique, simple RDF triples, and each is made upof a subject, predicate and object.
about urirefs
- uriref within a RDF model has not to be resolvable (point to something that is accessible on the web). RDF is designed to be a generic means of recording data, it can't restrict urirefs to being "real" data sources.
- URIs provide a common syntax for naming a resource regardless of the protocol used to access the resource.
- A URI is only an identifier. A specific protocol does not need to be specified, nor must the object identified physically exist on the Web
- you could use as URI a UUID (Universally Unique Identifier) referencing a COM or other technology components.
- URL is a location of an object, while a URI can function as a name or a location.
about blank nodes
- blank nodes are also called bnodes or anonymous nodes
- blank nodes are nodes that did not have a URI
- most RDF parsers generate an unique identifier (genid:xxxxx) for each blank nodes. This is needed to distinguish blank nodes from each others within the single instance of the graph.
- blank nodes are never merged in a graph because there is no way of determining whether two nodes are the same.
about literals
- a literal consist of three parts: a character string and an optional language tag and data type.
- literals represent RDF objects only, never subjects or predicates
about predicates
- every arc (predicate), without exception, must be labeled within the graph.
Saturday, August 13, 2011
Molecular substructure & similarity search
- http://depth-first.com/articles/2008/10/02/fast-substructure-search-using-open-source-tools-part-1-fingerprints-and-databases
- http://merian.pch.univie.ac.at/~nhaider/cheminf/moldb.html
- http://books.google.ch/books?id=pTrwTKzECOsC&dq=Chord+cartridge&source=gbs_navlinks_s
Fingerprint
- http://www.daylight.com/dayhtml/doc/theory/theory.finger.html#RTFToC80
- http://chemhack.com/archives/tag/fingerprint/
- http://chemhack.com/archives/2008/11/110/
- http://depth-first.com/articles/2008/10/02/fast-substructure-search-using-open-source-tools-part-1-fingerprints-and-databases
- http://depth-first.com/articles/2008/10/03/fast-substructure-search-using-open-source-tools-part-2-fingerprint-screen-with-sql
- http://depth-first.com/articles/2008/10/06/fast-substructure-search-using-open-source-tools-part-3-a-crud-api-for-fingerprints-in-ruby
Substructure Search
- http://depth-first.com/articles/2008/10/02/fast-substructure-search-using-open-source-tools-part-1-fingerprints-and-databases
- http://www.ebi.ac.uk/chebi/userManualForward.do#Advanced%20Search
- http://www.eyesopen.com/docs/html/javaprog/MaximumCommonSubstructureSearch.html
- http://www.ebi.ac.uk/thornton-srv/software/SMSD/
- http://www.jcheminf.com/content/1/1/12
Structure Editorts
Markush Suche (R-Gruppe)
- http://www.indiana.edu/~cheminfo/C571/c571_Barnard5.ppt
- http://www.daylight.com/meetings/mug97/Barnard/970227JB.html#SIANI95
- http://www.documentarea.com/qsar/GeoffDowns.pdf
- http://www.ambinter.com/jchem/doc/user/query_combinatorial_markush.html
Chemistry Databases
- http://depth-first.com/articles/2007/01/24/thirty-two-free-chemistry-databases
- PubChem ftp : ftp://ftp.ncbi.nih.gov/pubchem/Compound/CURRENT-Full/SDF/
Chemoinformatics Libs
LOD Visualisation using JavaScript
jQuery Sparkline
jQuery plugin generates sparklines (small inline charts) directly in the browser using data supplied either inline in the HTML, or via javascript.
Protovis
D3.js
gRaphaël
smoothiecharts
Processing.js
Geo Information :
http://openlayers.org/
Javascript mapping abstraction library mapstraction
Javascript 3D Engine
three.js
SVG
Polymaps
Tuesday, July 19, 2011
Word Bank is giving public access to 7000 data sets
Schema.org: Spoonfeeding Library Data to Search Engines
The internet of thinks
Definition of an Open Government Data Ontology (OGDO)
- the solution should be based on open source software
- with minimal self-development. One should be able to configure an existing framework
- the content of the catalog should be readable for computer (as LOD) and for human (HTML)
- everyone should be able to edit and add content.
- a Data-ontology (D-ontology)
- an Open-ontology (O-ontology)
- a Government-ontology (G-ontology)
1) eine Data-Ontologie (og[D]) : diese Ontologie (ein SKOS Taxonomie könnte erstmal reichen) definiert die Semantik der Daten. Die hätte Konzepten wir "Healthcare", "Army", "Defence", "Religion", "Education", ... einfach alle die nötigen Schubladen die wir brauchen um OGD einzuordnen. Bevor eine richtige OWL Ontologie zu definieren kann man hier erstmal mit einer SKOS Taxonomie anfangen. Das sollte auch einfacher das in semantic MediaWiki zu integrieren. Diese Ontologie ist auch ganz generisch. Sie gilt in Prinzip für alle Landen. Ein gut Anfang wäre die Katalog von open.gov anzuschauen. Wahrscheinlich hat man das auch schon gemacht. Ich habe bis jetzt noch nichts gefunden. Bis jetzt das beste das ich habe ist [ ]
2) eine Open-Ontologie ([O]gd) : diese Ontologie beschreibt die Art wir die Daten veröffentlicht sind, den so genannte Dienst Vertrag, die nicht funktionalen Aspekten der Schnittstelle: wo sind die Daten zu finden (URI)? in welche Format (in LOD sollte das eher mit Content-Negociation machen), gibt es ein Gebühr ? Wenn ja wieviel. Welche Copyright ist mit der Daten gebunden, wie grosse sind die Daten?, Wann wurden sie das letzte Mal aktualiesiert? gibt es ein Kontakt Personn ? ... Genau wie bei der Daten-Ontologie ist diese Ontologie ganz generisch und gar nicht CH-spezifisch. Im SOA Umfeld hat man bestimmt etwas ähnlich schon definiert.
3) eine Government-Ontologie (o[G]d): mit dieser Ontologie kann man die politische Organisation/Strukturen des Landes spezifizieren. Wir haben hier Konzepten wie "Bund", "Kantonen", "Gemeide", "Departement",... In Prinzip wird so eine Ontologie einmal für die Schweiz definiert und sollte sich nicht so viel ändern (es hat sich diese letzte 100 Jahren kaum geändert ...). Hier auch sollte erstmal ein Taxonomie reichen.
Diese 3 Ontologien definieren den formalen Rahme des Verzeichnis. Dann sollte man semantic MediaWiki so konfiguriert das es nur möglich ist, diese OGD-Ontologie/Taxonomie zu instanzieren. Da weiss ich nicht genau ob die semantic extension von MediaWiki so etwas ermöglicht. Grundsätzlich kann man 2 Sichten auf die Daten definieren: eine Daten Sicht und eine Government Sicht. Die Daten Sicht listet (es wird eher ein Baum-hierachie) einfach die verschieden Arten von Daten. Für eine bestimmte OGD-Daten Kategorie (zum Beispiel "Kultur" ) sehe
Tuesday, July 12, 2011
Semantic Wiki with Referata
Data.gov catalogs
Friday, May 20, 2011
DNS entries caching by Windows
This command shows all the dns domain name of the web servers web sites that a user has been visited.
ipconfig /flushdns:
removes that lists.
The Berlin SPARQL Benchmark
Query 1: Find products for a given set of generic features
SELECT DISTINCT ?product ?label
WHERE {
?product rdfs:label ?label .
?product rdf:type %ProductType% .
?product bsbm:productFeature %ProductFeature1% .
?product bsbm:productFeature %ProductFeature2% .
?product bsbm:productPropertyNumeric1 ?value1 .
FILTER (?value1 > %x%)}
ORDER BY ?label
LIMIT 10
Query 2: Retrieve basic information about a specific product for display purposes
SELECT ?label ?comment ?producer ?productFeature ?propertyTextual1
?propertyTextual2 ?propertyTextual3 ?propertyNumeric1
?propertyNumeric2 ?propertyTextual4 ?propertyTextual5
?propertyNumeric4
WHERE {
%ProductXYZ% rdfs:label ?label .
%ProductXYZ% rdfs:comment ?comment .
%ProductXYZ% bsbm:producer ?p .
?p rdfs:label ?producer .
%ProductXYZ% dc:publisher ?p .
%ProductXYZ% bsbm:productFeature ?f .
?f rdfs:label ?productFeature .
%ProductXYZ% bsbm:productPropertyTextual1 ?propertyTextual1 .
%ProductXYZ% bsbm:productPropertyTextual2 ?propertyTextual2 .
%ProductXYZ% bsbm:productPropertyTextual3 ?propertyTextual3 .
%ProductXYZ% bsbm:productPropertyNumeric1 ?propertyNumeric1 .
%ProductXYZ% bsbm:productPropertyNumeric2 ?propertyNumeric2 .
OPTIONAL { %ProductXYZ% bsbm:productPropertyTextual4 ?propertyTextual4 }
OPTIONAL { %ProductXYZ% bsbm:productPropertyTextual5 ?propertyTextual5 }
OPTIONAL { %ProductXYZ% bsbm:productPropertyNumeric4 ?propertyNumeric4 }}
Query 3: Find products having some specific features and not having one feature
SELECT ?product ?label
WHERE {
?product rdfs:label ?label .
?product rdf:type %ProductType% .
?product bsbm:productFeature %ProductFeature1% .
?product bsbm:productPropertyNumeric1 ?p1 .
FILTER ( ?p1 > %x% )
?product bsbm:productPropertyNumeric3 ?p3 .
FILTER (?p3 Query 4: Find products matching two different sets of features
SELECT ?product ?label
WHERE {
{ ?product rdfs:label ?label .
?product rdf:type %ProductType% .
?product bsbm:productFeature %ProductFeature1% .
?product bsbm:productFeature %ProductFeature2% .
?product bsbm:productPropertyNumeric1 ?p1 .
FILTER ( ?p1 > %x% )
} UNION {
?product rdfs:label ?label .
?product rdf:type %ProductType% .
?product bsbm:productFeature %ProductFeature1% .
?product bsbm:productFeature %ProductFeature3% .
?product bsbm:productPropertyNumeric2 ?p2 .
FILTER ( ?p2> %y% ) }}
ORDER BY ?label
LIMIT 10 OFFSET 10
Query 5: Find products that are similar to a given product
SELECT DISTINCT ?product ?productLabel
WHERE {
?product rdfs:label ?productLabel .
FILTER (%ProductXYZ% != ?product)
%ProductXYZ% bsbm:productFeature ?prodFeature .
?product bsbm:productFeature ?prodFeature .
%ProductXYZ% bsbm:productPropertyNumeric1 ?origProperty1 .
?product bsbm:productPropertyNumeric1 ?simProperty1 .
FILTER (?simProperty1
(?origProperty1 - 120))
%ProductXYZ% bsbm:productPropertyNumeric2 ?origProperty2 .
?product bsbm:productPropertyNumeric2 ?simProperty2 .
FILTER (?simProperty2
(?origProperty2 - 170)) }
ORDER BY ?productLabel
LIMIT 5
Query 6: Find products having a label that contains a specific string
SELECT ?product ?label
WHERE {
?product rdfs:label ?label .
?product rdf:type bsbm:Product .
FILTER regex(?label, "%word1%")}
Query 7: Retrieve in-depth information about a product including offers and reviews
SELECT ?productLabel ?offer ?price ?vendor ?vendorTitle ?review
?revTitle ?reviewer ?revName ?rating1 ?rating2
WHERE {
%ProductXYZ% rdfs:label ?productLabel .
OPTIONAL {
?offer bsbm:product %ProductXYZ% .
?offer bsbm:price ?price .
?offer bsbm:vendor ?vendor .
?vendor rdfs:label ?vendorTitle .
?vendor bsbm:country
?offer dc:publisher ?vendor .
?offer bsbm:validTo ?date .
FILTER (?date > %currentDate% ) }
OPTIONAL {
?review bsbm:reviewFor %ProductXYZ% .
?review rev:reviewer ?reviewer .
?reviewer foaf:name ?revName .
?review dc:title ?revTitle . OPTIONAL { ?review bsbm:rating1 ?rating1 . }
OPTIONAL { ?review bsbm:rating2 ?rating2 . } } }
Query 8: Give me recent English language reviews for a specific product
SELECT ?title ?text ?reviewDate ?reviewer ?reviewerName ?rating1
?rating2 ?rating3 ?rating4
WHERE {
?review bsbm:reviewFor %ProductXYZ% .
?review dc:title ?title .
?review rev:text ?text .
FILTER langMatches( lang(?text), "EN" )
?review bsbm:reviewDate ?reviewDate .
?review rev:reviewer ?reviewer .
?reviewer foaf:name ?reviewerName .
OPTIONAL { ?review bsbm:rating1 ?rating1 . }
OPTIONAL { ?review bsbm:rating2 ?rating2 . }
OPTIONAL { ?review bsbm:rating3 ?rating3 . }
OPTIONAL { ?review bsbm:rating4 ?rating4 . } }
ORDER BY DESC(?reviewDate) LIMIT 20
Query 9: Get information about a reviewer.
DESCRIBE ?x
WHERE {
%ReviewXYZ% rev:reviewer ?x }
Query 10: Get cheap offers which fulfill the consumer’s delivery requirements.
SELECT DISTINCT ?offer ?price
WHERE {
?offer bsbm:product %ProductXYZ% .
?offer bsbm:vendor ?vendor .
?offer dc:publisher ?vendor .
?vendor bsbm:country %CountryXYZ% .
?offer bsbm:deliveryDays ?deliveryDays .
FILTER (?deliveryDays %currentDate% ) }
ORDER BY xsd:double(str(?price))
LIMIT 10
Query 11: Get all information about an offer.
SELECT ?property ?hasValue ?isValueOf
WHERE {
{ %OfferXYZ% ?property ?hasValue }
UNION
{ ?isValueOf ?property %OfferXYZ% } }
Query 12: Export information about an offer into another schema.
CONSTRUCT {
%OfferXYZ% bsbm-export:product ?productURI .
%OfferXYZ% bsbm-export:productlabel ?productlabel .
%OfferXYZ% bsbm-export:vendor ?vendorname .
%OfferXYZ% bsbm-export:vendorhomepage ?vendorhomepage .
%OfferXYZ% bsbm-export:offerURL ?offerURL .
%OfferXYZ% bsbm-export:price ?price .
%OfferXYZ% bsbm-export:deliveryDays ?deliveryDays .
%OfferXYZ% bsbm-export:validuntil ?validTo }
WHERE {
%OfferXYZ% bsbm:product ?productURI .
?productURI rdfs:label ?productlabel .
%OfferXYZ% bsbm:vendor ?vendorURI .
?vendorURI rdfs:label ?vendorname .
?vendorURI foaf:homepage ?vendorhomepage .
%OfferXYZ% bsbm:offerWebpage ?offerURL .
%OfferXYZ% bsbm:price ?price .
%OfferXYZ% bsbm:deliveryDays ?deliveryDays .
%OfferXYZ% bsbm:validTo ?validTo }
Tuesday, May 17, 2011
Monday, May 16, 2011
Mac Keyboard Shortcuts
switch to black and white | ctrl + alt + cmd + 8 |
Take picture of the entire screen | cmd + shift + 3 |
Tuesday, May 10, 2011
Thursday, May 5, 2011
A Simple Linked Data and JavaScript Tutorial
Getting data from the Semantic Web (Ruby)
Wednesday, May 4, 2011
Getting Started with RDF and SPARQL Using 4store and RDF.rb
Tuesday, April 26, 2011
Thursday, April 21, 2011
Informationssicherheit: Lage in der Schweiz
Sunday, April 17, 2011
Saturday, April 16, 2011
Wednesday, April 13, 2011
Tuesday, April 12, 2011
Monday, April 11, 2011
Monisme et Dualisme
Repository of Open Government Data Catalogs
The second main feature is the collaborative aspect of the catalog. Anyone may contribute submitting new catalogs using a simple form [2]. All the changes will be moderated to avoid spam or inaccuracies. After the submission an the approval, the meta-information of the initiative will be available through a SPARQL endpoint [3].
[1] http://datos.fundacionctic.org/sandbox/catalog/faceted/
[2] http://datos.fundacionctic.org/sandbox/catalog/manage/new
[3] http://data.fundacionctic.org/sparql
Friday, April 8, 2011
Thursday, April 7, 2011
Saturday, April 2, 2011
Applications of Ontologies in Software Engineering
The Article
Abstract. The emerging field of semantic web technologies promises new stimulus for Software Engineering research. However, since the underlying concepts of the semantic web have a long tradition in the knowledge engineering field, it is sometimes hard for software engineers to overlook the variety of ontology-enabled approaches to Software Engineering. In this paper we therefore present some examples of ontology applications throughout the Software Engineering lifecycle. We discuss the advantages of ontologies in each case and provide a framework for classifying the usage of ontologies in Software Engineering.
Documentary about the Semantic Web by Kate Ray
serialization involves turning a graph into a tree
Friday, April 1, 2011
Wednesday, March 30, 2011
Friday, February 25, 2011
Open Government Data in Switzerland
Organisations: Firmen: Key players: Presentations: Podcasts:
Open Government Data
- By “open” one means open as in the Open (Knowledge) Definition — in essence material (data) is open if it can be freely used, reused and redistributed by anyone.
- By “government data” one means data and information produced or commissioned by government or government controlled entities.
Monday, February 21, 2011
Videos about linked data
von Georgi Kobilarov : http://www.yovisto.com/video/17144